(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
not(not(x)) → x
not(or(x, y)) → and(not(x), not(y))
not(and(x, y)) → or(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(or(y, z), x) → or(and(x, y), and(x, z))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
not(or(x, y)) →+ and(not(x), not(y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / or(x, y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
not(not(x)) → x
not(or(x, y)) → and(not(x), not(y))
not(and(x, y)) → or(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(or(y, z), x) → or(and(x, y), and(x, z))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
not(not(x)) → x
not(or(x, y)) → and(not(x), not(y))
not(and(x, y)) → or(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(or(y, z), x) → or(and(x, y), and(x, z))
Types:
not :: or → or
or :: or → or → or
and :: or → or → or
hole_or1_0 :: or
gen_or2_0 :: Nat → or
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
not,
andThey will be analysed ascendingly in the following order:
and < not
(8) Obligation:
TRS:
Rules:
not(
not(
x)) →
xnot(
or(
x,
y)) →
and(
not(
x),
not(
y))
not(
and(
x,
y)) →
or(
not(
x),
not(
y))
and(
x,
or(
y,
z)) →
or(
and(
x,
y),
and(
x,
z))
and(
or(
y,
z),
x) →
or(
and(
x,
y),
and(
x,
z))
Types:
not :: or → or
or :: or → or → or
and :: or → or → or
hole_or1_0 :: or
gen_or2_0 :: Nat → or
Generator Equations:
gen_or2_0(0) ⇔ hole_or1_0
gen_or2_0(+(x, 1)) ⇔ or(hole_or1_0, gen_or2_0(x))
The following defined symbols remain to be analysed:
and, not
They will be analysed ascendingly in the following order:
and < not
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol and.
(10) Obligation:
TRS:
Rules:
not(
not(
x)) →
xnot(
or(
x,
y)) →
and(
not(
x),
not(
y))
not(
and(
x,
y)) →
or(
not(
x),
not(
y))
and(
x,
or(
y,
z)) →
or(
and(
x,
y),
and(
x,
z))
and(
or(
y,
z),
x) →
or(
and(
x,
y),
and(
x,
z))
Types:
not :: or → or
or :: or → or → or
and :: or → or → or
hole_or1_0 :: or
gen_or2_0 :: Nat → or
Generator Equations:
gen_or2_0(0) ⇔ hole_or1_0
gen_or2_0(+(x, 1)) ⇔ or(hole_or1_0, gen_or2_0(x))
The following defined symbols remain to be analysed:
not
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
not(
gen_or2_0(
+(
1,
n10791_0))) →
*3_0, rt ∈ Ω(n10791
0)
Induction Base:
not(gen_or2_0(+(1, 0)))
Induction Step:
not(gen_or2_0(+(1, +(n10791_0, 1)))) →RΩ(1)
and(not(hole_or1_0), not(gen_or2_0(+(1, n10791_0)))) →IH
and(not(hole_or1_0), *3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
not(
not(
x)) →
xnot(
or(
x,
y)) →
and(
not(
x),
not(
y))
not(
and(
x,
y)) →
or(
not(
x),
not(
y))
and(
x,
or(
y,
z)) →
or(
and(
x,
y),
and(
x,
z))
and(
or(
y,
z),
x) →
or(
and(
x,
y),
and(
x,
z))
Types:
not :: or → or
or :: or → or → or
and :: or → or → or
hole_or1_0 :: or
gen_or2_0 :: Nat → or
Lemmas:
not(gen_or2_0(+(1, n10791_0))) → *3_0, rt ∈ Ω(n107910)
Generator Equations:
gen_or2_0(0) ⇔ hole_or1_0
gen_or2_0(+(x, 1)) ⇔ or(hole_or1_0, gen_or2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
not(gen_or2_0(+(1, n10791_0))) → *3_0, rt ∈ Ω(n107910)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
not(
not(
x)) →
xnot(
or(
x,
y)) →
and(
not(
x),
not(
y))
not(
and(
x,
y)) →
or(
not(
x),
not(
y))
and(
x,
or(
y,
z)) →
or(
and(
x,
y),
and(
x,
z))
and(
or(
y,
z),
x) →
or(
and(
x,
y),
and(
x,
z))
Types:
not :: or → or
or :: or → or → or
and :: or → or → or
hole_or1_0 :: or
gen_or2_0 :: Nat → or
Lemmas:
not(gen_or2_0(+(1, n10791_0))) → *3_0, rt ∈ Ω(n107910)
Generator Equations:
gen_or2_0(0) ⇔ hole_or1_0
gen_or2_0(+(x, 1)) ⇔ or(hole_or1_0, gen_or2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
not(gen_or2_0(+(1, n10791_0))) → *3_0, rt ∈ Ω(n107910)
(18) BOUNDS(n^1, INF)